Fish virus-induced interferon exerts antiviral function through Stat1 pathway.

نویسندگان

  • Fei-Fei Yu
  • Yi-Bing Zhang
  • Ting-Kai Liu
  • Ying Liu
  • Fan Sun
  • Jun Jiang
  • Jian-Fang Gui
چکیده

Virus-induced interferons (IFNs) have been identified in various fish species and display antiviral activities similar to mammalian type I IFNs. However, apart from the mammalian IFN system, the IFN signaling pathway remains largely unknown. Using transient transfection and recombinant protein, we are reporting in this study that a crucian carp (Carassius auratus L.) IFN exhibits strong antiviral activity against grass carp hemorrhagic virus (GCHV) infection and also mediates Poly I:C-induced antiviral response, which correlates with its ability to induce a set of IFN-stimulated genes (ISGs). Strikingly, overexpression of wild-type Stat1 increases the effects of IFN on both the expression of ISGs and the inhibition of virus infection, whereas a dominant negative mutant of Stat1 (Stat1-Delta C), which lacks of the C-terminal transcriptional activation domain (TAD), inhibits the antiviral activity of IFN and reduces the expression of ISGs, demonstrating that fish IFN induces the expression of ISGs and host antiviral response through Stat1 pathway reminiscent that of mammalian IFNs. Significantly, unlike mammalian type I IFNs, recombinant fish IFN is able to upregulate IFN itself, which is enhanced by overexpression of Stat1 but impaired by knockdown of Stat1, indicating a positive feedback loop in regulation of IFN itself. These results provide strong evidence for the existence of an evolutionary conserved Stat1 pathway between fish and mammals, which is indispensable for fish virus-induced IFN antiviral response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mumps virus V protein antagonizes interferon without the complete degradation of STAT1.

Mumps virus (MuV) has been shown to antagonize the antiviral effects of interferon (IFN) through proteasome-mediated complete degradation of STAT1 by using the viral V protein (T. Kubota et al., Biochem. Biophys. Res. Commun. 283:255-259, 2001). However, we found that MuV could inhibit IFN signaling and the generation of a subsequent antiviral state long before the complete degradation of cellu...

متن کامل

The Epstein-Barr virus SM protein induces STAT1 and interferon-stimulated gene expression.

Viruses utilize numerous mechanisms to counteract the host's immune response. Interferon production is a major component of the host antiviral response. Many viruses, therefore, produce proteins or RNA molecules that inhibit interferon-induced signal transduction pathways and their associated antiviral effects. Surprisingly, some viruses directly induce expression of interferon-induced genes. S...

متن کامل

All four Sendai Virus C proteins bind Stat1, but only the larger forms also induce its mono-ubiquitination and degradation.

Sendai virus infection strongly induces interferon (IFN) production and has recently been shown to interdict the subsequent IFN signaling through the Jak/Stat pathway. This anti-IFN activity of SeV is due to its "C" proteins, a nested set of four proteins (C', C, Y1, Y2) that carry out a nested set of functions in countering the innate immune response. We previously reported that all four C pro...

متن کامل

Activated Ras/MEK inhibits the antiviral response of alpha interferon by reducing STAT2 levels.

The ability of interferon (IFN) to induce the expression of antiviral genes, and therefore suppress viral infection, is dependent on the activity of cellular suppressors. The Ras/MEK pathway is one of these cellular suppressors, since the activation of Ras/MEK permits viral replication in the presence of alpha IFN (IFN-alpha). Here, we have investigated the mechanism by which activated Ras/MEK ...

متن کامل

STAT2/IRF9 directs a prolonged ISGF3-like transcriptional response and antiviral activity in the absence of STAT1

Evidence is accumulating for the existence of a signal transducer and activator of transcription 2 (STAT2)/interferon regulatory factor 9 (IRF9)-dependent, STAT1-independent interferon alpha (IFNα) signalling pathway. However, no detailed insight exists into the genome-wide transcriptional regulation and the biological implications of STAT2/IRF9-dependent IFNα signalling as compared with interf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular immunology

دوره 47 14  شماره 

صفحات  -

تاریخ انتشار 2010